Surveillance of West Nile virus infection in Europe: assessment and improvement axes

S. Lecollinet, AFSSA LERPAZ
UMR1161 Virologie
CRL Equine infectious diseases
s.lecollinet@afssa.fr
Surveillance of West Nile disease in Europe

Context

Virus
Transmission cycle
Clinics
Diagnostics
Treatment / Prevention

Surveillance of West Nile virus infection

USA
Europe
West Nile fever

I. Context : 1. Virus

- Family: *Flaviviridae*
- Genus: Flavivirus
- Examples: Yellow fever virus, Dengue virus

Major members of the Japanese encephalitis serological group

<table>
<thead>
<tr>
<th>Serocomplex</th>
<th>Virus</th>
<th>Geographic distribution</th>
<th>Syndrome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dengue</td>
<td>Dengue type-1, Dengue type-2, Dengue type-3, Dengue type-4</td>
<td>Tropics</td>
<td>Fever</td>
</tr>
<tr>
<td>Mosquitoes</td>
<td>Japanese encephalitis, West Nile, Saint Louis encephalitis</td>
<td>South Asia worldwide America</td>
<td>Meningitis Encephalitis CROSS REACTIONS</td>
</tr>
<tr>
<td>Yellow fever</td>
<td>Yellow fever</td>
<td>Africa South America</td>
<td>Hemorrhagic fever</td>
</tr>
</tbody>
</table>
2. Transmission cycle of WNV

Vectors

Incidental hosts
Weak and short viremia

Birds

Furry D et al., 2003
3. Clinical signs

Incubation: 3-15 days

- Asymptomatic infection (70%)
- Mild symptoms (20%)
 Fever, weakness, myalgia, ataxia
- Neuroinvasive forms (1-10%)
 Meningitis, encephalitis, paresis
 Motor neurons infection and flaccid paralysis
 Letality: 20-57% (horses), 10% (humans)

M. Long
Kramer LD. et al, Lancet Neurol, 2007

Absence of symptoms or non pathognomonic symptoms
4. Diagnostics

- **Serology**
 - ELISA (IgM, IgG)
 - Seroneutralization tests

- **Virology**
 - Virus isolation
 - RT-PCR (classical or real-time)
 - Antigen detection (immunohistochemistry,...)
5. Prevention

Vaccine for horses (only available in the USA): inactivated, poxvirus-vectored or yellow fever virus-vectored (Chimerivax)

Intervention on mosquito breeding sites, protection against mosquito bites (long clothes, insecticides)

Poor prevention methods, no available treatment

Importance of surveillance strategies
Objectives = to provide decision makers and professionals in human and animal health with relevant and updated information on levels of WNV circulation, so as to take appropriate information and prevention measures in order to reduce the incidence of WN clinical cases.
Multi-species surveillance : humans, equids, birds, (mosquitoes)
 Passive surveillance : clinical diagnosis of WNV infection in horses or in humans, analysis of enhanced bird mortality rates
 Active surveillance : development of a specific epidemiological network for prospective WN virus and/or WN virus-antibody detection in birds, horses,...
II. Surveillance of WNV infection in the USA

USA (1999-2007) : >23000 equine cases (2002 : nearly 10000 cases)
1,5-3,4 millions human WNV infections – 1200 neuroinvasive forms per year (19-2863) – 116 deaths (2-284)
High bird mortality rates (LaDeau SL et al., Nature, 2007)
Context of intense WNV circulation and symptomatic infections in humans, horses and birds:
Most of alerts (95%) for WNV circulation were launched after passive detection: bird mortality (2/3), horse case (1/3)
II. Surveillance of WNV infection in Europe

Seroconversions (active surveillance)

Reemergence in Europe in the 1990s

Dauphin G et al., Virologie, 2006
Surveillance of West Nile virus infection in Europe: assessment and improvement axes

WNV circulation in 2008:

Italy (Emilia-Romagna province, Ferrara):
- 20 cases in horses (14 farms) (passive surveillance: notification of neurological symptoms in horses; active surveillance implemented)
- Wild birds = 6 crows, 7 magpies (active surveillance)
- 2 human cases (passive surveillance)

Romania (Braila county):
- 1 human case (passive surveillance)

France (Guadeloupe Island):
- 14 seroconversions in horses (13 confirmed) (active surveillance)
- No human or equine case associated with WNV circulation
Assessment of surveillance methods for identification of WNV circulation

Passive surveillance: good cost/efficacy ratio

Bird mortality = difficulties inherent to the rare bird mortality in Europe and the collection of a sufficient number of dead birds; this latter aspect has been stimulated since connection of WNV surveillance with influenza surveillance or by public information.

Equine clinical cases = regulated reporting to animal health authorities; good sensitivity, concomitant or a bit earlier than the reporting of human cases.

Human clinical cases
Surveillance of **bird mortality** in 2004 in every French department, with enhanced surveillance in the 10 Mediterranean departments (SAGIR network, virological diagnostics at the French Reference Center for Arboviruses)

Surveillance of West Nile virus in avifauna in 2004

- Enhanced surveillance of bird mortality + active surveillance
- Enhanced surveillance of bird mortality
- Surveillance of bird mortality
Active surveillance:

Bird seroconversion (ducks, fowls) = good sensitivity (Romania, France), limited by logistics and technical difficulties. Difficult to set a critical level above which clinical cases would be likely to occur.

Horse seroconversion = technically easy. Has allowed for the identification of WNV circulation in the Caribbean (Guadeloupe).

Mosquito capture = not an early warning system (costly, technically difficult,…). Interesting to approach the epidemiological cycle of WNV in different regions of Europe and to isolate the virus (Romania, France, Check republic, USA,…).

The surveillance system has to fit to epidemiological, climatic and geographical conditions in the exposed country (endemic circulation, limited, outbreaks,…).
Active surveillance based on serological monitoring of sentinel birds in France

In 2004:
• 30 sites in 6 Mediterranean départements
• 300 birds were tested serologically every month from June to October
Results of active and passive surveillance in France between 2000 and 2007
What is crucial for efficient WNV surveillance:

- Coordinated effort of public health and animal health actors
- Integrated national surveillance system
- Trained or at least well-informed physicians, veterinarians and other involved actors
- Prepared laboratories with sufficient diagnostic capacities in case of outbreaks

Current situation in Europe:

- Diverse national surveillance systems: health-care systems organisations, laboratories and analytical methods
- Different reporting systems
Improvement axes:

Towards a **global surveillance scheme** at the European level?
Harmonization of diagnostic tools
Definition of surveillance protocols (case definition, requirements for confirmation of WNV infection, surveillance methods) in accordance with the peculiarity of WNV epidemiological situation in each country

European networks : ECDC (2005), ENIVD (European Network for diagnostics of « Imported » Viral Diseases) or ARBOZOONET (Network on zoonotic arboviral infections), aim at strengthening national diagnostic capacities (formation,…), surveillance and response systems in Europe.

Evaluation of surveillance methods : impact on disease containment, economic and social impact,…
Conclusion

Need for better preparedness:

- rapid disease identification by physicians or veterinarians
- improvement and harmonization of diagnostic tools
- adapted surveillance
- availability of vaccines

Need for research studies:

- epidemiology in Europe (introduction, virus persistence, vectors, avian amplifying hosts, …)
- risk modeling
Many thanks to

WNV National and European Reference Laboratory
(AFSSA, UMR1161 Virologie, Maisons-Alfort)
Stéphan ZIENTARA
Céline BAHUON
Josiane MAINGAULT

National Reference Center for human arboviral infections
(Pasteur Institute, Paris)
Philippe DESPRES
Charlotte RENAUDAT
Marie-Pascale FRENKIEL
Isabelle MOLTINI