SOP DHA/ANA300 v01

Détection, confirmation et quantification d’antibiotiques (Aminoglycosides) dans les aliments pour bétail par LC-MS/MS

Mise en fonction : 10/03/2014

Pages : 13
Annexes : 3

<table>
<thead>
<tr>
<th>Nom, fonction</th>
<th>Date</th>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rédaction :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Robert Christelle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Responsable méthode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vérification :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jean-Luc Beaudart</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Responsable AQ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approbation :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Philippe Delahaut</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Directeur</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Toute reproduction interdite
Historique de la méthode

<table>
<thead>
<tr>
<th>N° Version</th>
<th>Date</th>
<th>Evolution de la méthode</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOP DHA/ANA300 v01</td>
<td>28/02/2014</td>
<td>Nouvelle méthode</td>
</tr>
</tbody>
</table>

Destinataires : Département Santé / labo LC-MS/MS

Opérateurs
Pierre-Yves BRASSEUR
Christelle ROBERT

Responsable
Christelle ROBERT
Sommaire

1. Définitions .. 4
2. Champ d’application et références légales ... 4
3. Principe général .. 4
4. Matériel, réactifs et standards ... 5
 4.1. Matériel .. 5
 4.2. Réactifs et solvants .. 5
5. Échantillons ... 6
 5.1. Réception des échantillons et enregistrement ... 6
 5.2. Préparation des échantillons .. 6
6. Mode opératoire .. 6
 6.1. Fortification des échantillons .. 6
 6.1.1. Standard .. 6
 6.1.2. Aliment pour animaux .. 6
 6.1.3. Droite de calibration (confirmation quantitative) ... 7
 6.2. Extraction ... 7
 6.2.1. Aliment pour animaux .. 7
 6.3. Analyse par LC-MS/MS ... 8
 6.4. Traitement des données acquises ... 9
 6.5. Acceptation de la séquence d’analyse ... 9
 6.6. Interprétation des résultats et rapport ... 9
 6.6.1. Interprétation des résultats .. 9
 6.6.2. Rapport ... 10
7. Sauvegarde des données ... 10
8. Cartes de contrôle ... 10
9. Références .. 10
ANNEXE 1. Préparation des solutions stock et des pools ... 11
 A.1.1. Solutions stock .. 11
 A.1.2. Validité des solutions stocks .. 11
 A.1.3. Préparation des pools .. 11
 A.1.3.1. Pool P300-istd ... 12
 A.1.3.2. Pool P300-feed .. 12
ANNEXE 2. Composés recherchés, données chromatographiques et MRM 13
ANNEXE 3. Composés recherchés ... 13
1. Définitions

- UPLC-MS/MS : Ultra Performance Liquid Chromatography - Mass Spectrometry
- QC : Quality Control, Echantillon contenant toutes les molécules cibles recherchées
- U : Incertitude de mesure élargie

Les codes abrégés des substances à rechercher sont définis dans la procédure QA/REA02

2. Champ d’application et références légales

La distribution d'antibiotiques aux animaux par les aliments est autorisée par la réglementation communautaire sous deux types de statuts :
- en tant qu'additif dans un aliment supplémenté : les coccidiostatiques ou les histomonostatiques (Règlement (CE) n° 1831/2003 du Parlement européen et du Conseil du 22 septembre 2003 relatif aux additifs destinés à l'alimentation des animaux, visant à établir une procédure uniforme pour l'autorisation et l'utilisation des additifs destinés à l'alimentation des animaux. Et visant également à fixer des règles pour l’étiquetage et la surveillance de ces substances).
- en tant que médicament vétérinaire dans un aliment médicamenteux : pour un traitement ou curatif (Directive 90/167/CE du Conseil, du 26 mars 1990, établissant les conditions de préparation, de mise sur le marché et d'utilisation des aliments médicamenteux pour animaux dans la Communauté)

La présence de résidus de substances pharmacologiquement actives et non autorisés dans les aliments découlant d’une utilisation illégale ou d’une contamination croisée devrait être rigoureusement contrôlée et surveillée.

En janvier 2013, l’Agence Fédérale pour la Sécurité de la Chaîne Alimentaire (AFSCA) et les fabricants belges agréés pour la fabrication d’aliments médicamenteux représentés par l’Association Professionnelle des Fabricants d’Aliments Composés pour Animaux (APFACA) ont signé une convention concernant les aliments médicamenteux. Cette convention a ensuite été revue en décembre 2013. L’objectif poursuivi est de minimaliser le niveau de contamination croisée de médicaments contenus dans les aliments médicamenteux vers les aliments blancos. Pour ce faire, le principe ALARA est appliqué. Des valeurs-cibles sont définies afin que les fabricants sachent clairement ce qu’est un niveau maximum acceptable et réalisable de contamination croisée (Annexe 3).

3. Principe général

La méthode décrite dans cette SOP s’applique à l’analyse de ces substances pharmacologiquement actives dans les aliments pour animaux.

Le screening, la confirmation et la quantification de ces substances dans les aliments pour bétail sont réalisés par LC-MS/MS après une extraction au TCA 5% suivi d’une purification sur SPE avant analyse.
4. Matériel, réactifs et standards

4.1. MATERIEL

a. Verreries diverses et godets en plastique Nalgene (VWR) et Falcon ou équiv.
b. Centrifugeuses, équipements M442, M502
c. Balances, équipements M446, M387
d. Agitateur magnétique
e. Fioles "Packard"
f. Rampe d'évaporation sous azote + azote N28 (Air Liquide), équipem. M157, M316, M314, M315
g. Vortex, équipements M10 à M13
h. Bain à ultrasons, équipements M576
i. Agitateurs horizontaux M8, M246
j. Micropipettes Gilson P10000, P1000, P200, P20, ou équivalent
k. Pipettes Pasteur + poire
l. Vials d'injection en verre de 1.5 ml
m. Pince à sertir les vials
n. Bain d'eau thermostaté avec dispenseur d'azote, équipem. M515, M3, M194, M120, M594, M326
o. Chaîne ULPL Acquity TQ MS Xevo (M655 à M658)
p. Colonnes Acquity UPLC HSS T3 1,8 µm, 2,1 x150 mm (ou équivalent)
q. Agitelec, équipements M261, M184, M505
r. Colonnes HPLC Alltima C18, 5µ, 150 x 3mm (Grace ou équivalent)
s. Papier filtre (Whatman 595 ½, diam 125), ref. 10311644

4.2. REACTIFS ET SOLVANTS

Note : tous les solvants et réactifs sont de qualité « pour analyse » (PA)

a. Eau bidistillée et distillée
b. Acétonitrile pour HPLC (Biosolve, ou équivalent)
c. Acide trichloroacétique (TCA, Acros Organics, ou équivalent)
d. Eau pour UPLC (Biosolve, ou équivalent)
e. Méthanol pour UPLC (Biosolve, ou équivalent)
f. KH2PO4 (Analal normapur, Prolabo, ou équivalent)
g. Eau pour HPLC (Acros Organics, ou équivalent)
h. Solutions stocks de standards, dans l’eau (voir aussi SOP QA/REA02 et annexe 1)
i. NaOH (Analal normapur, Prolabo, ou équivalent)
j. HCl (Acros Organics, ou équivalent)
k. SPE de type échangeuse de cation (Baker, CBX, widebore 500mg, 6ml)
l. Acide acétique (Acros Organics, ou équivalent)
m. Solution d’acide Heptfluorobutyrique à 1% (HFBA, Aldrich) : 1ml HFBA/100 ml d’eau HPLC
n. Solution d’extraction KH2PO4 10 mM (1,36 g/l) + 5% TCA (50 g/l) dans l’eau distillée
o. NaOH 2M (8 g/ 100 ml) dans l’eau distillée
p. HCl 1M (environ 8,6 ml /100 ml) dans l’eau distillée
5. **Échantillons**

5.1. **RECEPTION DES ÉCHANTILLONS ET ENREGISTREMENT**

La réception des échantillons, leur enregistrement et encodage sont réalisés selon la procédure SOP QA/GEN07A. Les feuilles de route sont imprimées sur base de cette même procédure. L’analyse débute dès la réception des échantillons. Dans le cas contraire, les échantillons doivent être entreposés au congélateur et remis à température ambiante avant le début de l’analyse. Les dates de début et de fin d’analyse sont enregistrées sur la feuille de route. Les échantillons de substances destinées à l’alimentation humaine (excepté les produits animaux) seront conservés conformément à une note de service de l’AFSCA (Procédure QA/GEN07A).

5.2. **PREPARATION DES ÉCHANTILLONS**

6. **Mode opératoire**

6.1. **FORTIFICATION DES ÉCHANTILLONS**

6.1.1. **Standard**

Un standard est préparé comme suit :
1. Placer 100 µl du pool P300-feed et 50 µl du P300-ISTD dans un tube de 15 ml
2. Evaporer à sec sous flux d’azote à 40°C
3. Resuspendre le standard dans 1 ml de d’eau pour HPLC

6.1.2. **Aliment pour animaux**

6.1.2.1. **Échantillons de contrôle**

Lors de chaque série d’analyse, des échantillons de contrôle supplémentaires doivent également être préparés et extraits comme les autres échantillons :

- **Un Blanc** (5 gr) est préparé à l’aide d’un échantillon de matrice blanche (aliment) supplémenté avant extraction avec le pool de standard interne (P300-ISTD).
- **Un QC** (5 gr) est préparé à l’aide d’un échantillon de matrice blanche (aliment) supplémenté avant extraction avec 100µl de pool P300-feed et 50 µl de pool P300-ISTD. (voir annexes).

Laisser reposer 15 min et extraire suivant le mode opératoire décrit en 6.2.1.

6.1.2.2. **Échantillons de routine**

Les échantillons (5 gr) sont fortifiés avec 50 µl du pool de standards internes (P300-ISTD). Laisser reposer 15 min et extraire suivant le mode opératoire décrit en 6.2.2.
6.1.3. Droite de calibration (confirmation quantitative)

L’étalonnage est réalisé à partir d’échantillon blanc de matrice auquel est ajouté une quantité définie de pool P300-feed comme défini dans le tableau ci-dessous. Les échantillons nécessaires à l’établissement d’un étalonnage sont les suivants

<table>
<thead>
<tr>
<th>Vol P300-Feed (µl)</th>
<th>Vol P300-std (µl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS1 = Blanc</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>50</td>
</tr>
<tr>
<td>CS2</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>50</td>
</tr>
<tr>
<td>CS3</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>50</td>
</tr>
<tr>
<td>C4 = QC</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>50</td>
</tr>
<tr>
<td>CS5</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>50</td>
</tr>
<tr>
<td>CS6</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>50</td>
</tr>
<tr>
<td>CS7</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>50</td>
</tr>
<tr>
<td>CS8</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>50</td>
</tr>
</tbody>
</table>

La concentration du CS4 correspond à la concentration maximale autorisée lors de cross contamination (1%).

6.2. EXTRACTION

6.2.1. Aliment pour animaux

6.2.1.1. Extraction

1. Peser 5 ± 0,1 g d’échantillon préalablement broyé et homogénéisé
2. Ajouter 10 ml avec un mélange KH2PO4 10mM et TCA 5%
3. Agiter énergiquement 15 min à l’agitелеc
4. Centrifuger pendant 5 minutes à environ 4650 x g, à environ 4°C
5. Prélève le surnageant dans un autre tube Falcon
6. Réextraire le culot avec nouveau 10 ml avec un mélange KH2PO4 10mM et TCA 5%
7. Agiter énergiquement 15 min à l’agitелеc
8. Centrifuger pendant 5 minutes à environ 4650 x g, à environ 4°C
9. Combiner les surnageants
10. Ajuster le pH à 7.5 – 8.5 avec du NaOH 5M et HCl 1M. (± 1 ml NaOH) avant la purification

6.2.1.2. Purification

1. Conditionner la SPE avec 5 ml de méthanol puis 5 ml d’eau
2. Placer un réservoir de 20 ml au dessus de la SPE
3. Placer un entonnoir contenant un filtre plissé (Whatman 595 ½, diam 125)
4. Charger l’échantillon sur la SPE et mettre le vide de manière à avoir un débit de ± 1 ml/min
5. Laver avec 3 ml d’eau et laisser sécher la colonne sous vide
6. Eluer avec 3 ml d’un mélange méthanol/acide acétique 10% dans un tube falcon de 15 ml (tube plastique, adsorption des AMG sur le verre)
7. Evaporer à sec sous flux d’azote à environ 40°C (env. 1h30).
8. Reprendre l’extrait avec 1 ml d’eau HPLC et vortexer
9. Placer l’échantillon dans un vial
6.3. **ANALYSE PAR LC-MS/MS**

6.3.1. **Conditions HPLC-Acquity**

Le programme LC utilisé présente les caractéristiques suivantes :
- Débit d’élution : 0,5 ml/min.
- Injecter 50 µl de l’extrait purifié
- Colonne Alltech 1,8 µm, 2,1 x150 mm (ou équivalent)
- Température du four à 40 °C (± 1°C)
- Température de la chambre à échantillons : 15 °C (±1 °C)
- Le gradient suivant est appliqué :

<table>
<thead>
<tr>
<th>Temps (min.)</th>
<th>HFBA 0,2 %</th>
<th>Méthanol (80%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HFBA 1% (20%)</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>93.7</td>
<td>6.3</td>
</tr>
<tr>
<td>0.5</td>
<td>93.7</td>
<td>6.3</td>
</tr>
<tr>
<td>1</td>
<td>30</td>
<td>70</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>70</td>
</tr>
<tr>
<td>4.5</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>5.6</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>5.65</td>
<td>93.7</td>
<td>6.3</td>
</tr>
<tr>
<td>6.6</td>
<td>93.7</td>
<td>6.3</td>
</tr>
</tbody>
</table>

6.3.2. **Conditions MS-MS Xevo**

L’acquisition des données se fait en mode MS/MS en « multiple reaction monitoring » (MRM). Les programmes MRM de screening des médicaments vétérinaires comprennent les données reprises dans le tableau en annexe (Annexe 2). La détection des composés par spectrométrie de masse est basée sur une ionisation par électrospray en mode positif ou négatif. Le programme présente les caractéristiques suivantes :
- Source ESI en mode positif avec une température de désolvatation d’environ 500 °C
- Le voltage du capillaire est d’environ de 2,5 kV
- La pression dans la cellule de collision est située d’environ 2.10^{-3} mbar.
- La température de source est d'environ 150 °C.

6.3.3. **Contenu d’une séquence d’analyse.**

La succession des échantillons injectés au cours d’une séquence d’analyse s’établit comme suit :
- Standard : L’injection d’un standard de référence permet la vérifier des temps de rétention relatifs
- 1 Lavage
- Droite de calibration
- 1 Lavage
- Les échantillons
- Un point après (stabilité du détecteur)
6.4. **TRAITEMENT DES DONNEES ACQUISES**

Le programme Targetlynx ‘feed-afsca’ est utilisé pour le traitement des données acquises et l’intégration des pics chromatographiques de chaque composé et du standard interne. Une fois les données traitées, il est possible de visualiser pour chaque composé le chromatogramme de ses transitions et de déterminer la réponse relative par rapport au standard interne (surface du pic).

6.5. **ACCEPTATION DE LA SEQUENCE D’ANALYSE**

Les critères suivants doivent être rencontrés pour permettre l’acceptation de la séquence d’analyse :

- Les standards internes avec un S/N supérieur à 10 doivent être présents dans chaque échantillon d’analyse ainsi que dans tous les échantillons de contrôle (QC) et dans tous les blancs de contrôle associés à la série ;
- L’absence d’un standard interne dans un échantillon conduira obligatoirement à sa réanalyse.
- Dans tous les échantillons de contrôle associés à la série d’analyse, chaque composé devra présenter un rapport signal/bruit supérieur à 3 pour la transition de screening.
- Le temps de rétention relatif de chaque composé ne pourra différer de plus de 2,5 % par rapport à celui mesuré dans le QC.
- Dans le blanc(s) de contrôle associé(s) à la série d’analyse, il ne pourra être détecté au temps de rétention de chaque composé un pic chromatographique dont la réponse est supérieure à 1/10 de la réponse du CS2.

Lorsque le technicien devra vérifier si le rapport signal sur bruit est égal ou supérieur à 10, il le fera visuellement. En cas d’hésitation, il le vérifiera manuellement.

6.6. **INTERPRETATION DES RESULTATS ET RAPPORT**

6.6.1. **Interprétation des résultats**

- Un échantillon sera déclaré **Positif** pour un composé si la réponse obtenue (réponse relative entre surface du composé et surface du standard interne) est supérieure au CS2 avec un temps de rétention relatif conforme.
- Un échantillon sera déclaré **Non-conforme** pour un composé si la réponse obtenue (réponse relative entre surface du composé et surface du standard interne) est supérieure au CS4 + U avec un temps de rétention relatif conforme avec U comme incertitude de mesure élargie. La concentration du CS4 correspond à la concentration maximale autorisée lors de cross contamination (1%).
- Le temps de rétention relatif du composé dans l’échantillon ne pourra différer de plus de 2,5 % par rapport à celui mesuré dans le QC.
- Le rapport des intensités (aires) des deux transitions est en accord avec le rapport correspondant du QC, suivant le tableau ci-dessous :

| Tableau 1. Tolérance admise pour les rapports ioniques (cf. Décision 2002/657/CE) |
|-----------------|-----------------|
| **Rapport des 2 transitions** | **Tolérance relative permise** |
| > 50 % | ± 20 % |
| > 20 % - 50 % | ± 25 % |
| > 10 % – 20 % | ± 30 % |
| ≤ 10 % | ± 50 % |
6.6.2. **Rapport**

- Un échantillon **Positif** : Nom du composé + conc.
- Un échantillon **Non-conforme** : Nom du composé + conc. + Incertitude de Mesure élargie U

7. **Sauvegarde des données**

Tous les spectres MS sont enregistrés sur le support informatique en réseau. Les feuilles de route et les chromatogrammes d'échantillons confirmés non-conformes sont conservés dans les classeurs correspondants.

8. **Cartes de contrôle**

La méthode décrite dans cette procédure étant une méthode de screening qualitative, aucun enregistrement dans des cartes de contrôle n’est réalisé.

9. **Références**

- Règlement (CE) No 1831/2003 du parlement Européen et du Conseil du 22 septembre 2003, relatif aux additifs destinés à l'alimentation des animaux
- Directive 90/167/CE du Conseil, du 26 mars 1990, établissant les conditions de préparation, de mise sur le marché et d'utilisation des aliments médicamenteux pour animaux dans la Communauté
- Confirmation of Aminoglycosides by HPLC-MS/MS United States Department of Agriculture Food Safety and Inspection Service, Office of Public Health Science.
ANNEXE 1. **Préparation des solutions stock et des pools**

A.1.1. **Solutions stock**

Les standards sont achetés sous forme de poudre ou de solution. Les solutions stocks sont préparées en solubilisant une quantité connue du standard pure dans un solvant approprié (eau). Les solutions ainsi obtenues sont conservées au 4°C. La concentration exacte est déterminée d’après la valeur de la pesée et en corrigeant cette dernière par la pureté.

A.1.2. **Validité des solutions stocks**

Chaque solution doit présenter une date limite de conservation après laquelle elle devrait normalement être éliminée. En pratique, une validité d’un an est attribuée à une solution à partir du moment de sa préparation. Pour les solutions certifiées, la date limite de conservation est celle déterminée par le fournisseur.

A.1.3. **Préparation des pools**

Les tableaux ci dessous indiquent la teneur (en µg/kg) de chaque composé dans un échantillon constitué de 5 g de matrice auquel ont été ajoutés 100 µl du pool correspondant à cette matrice.
A.1.3.1. Pool P300-istd

<table>
<thead>
<tr>
<th>Nom:</th>
<th>P300-feed-istd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composition et concentration:</td>
<td>Voir SOP DHA/ANA300</td>
</tr>
</tbody>
</table>

| Date de préparation: | | Date d'expiration: | | Signature | | opérateur: | |
|---------------------|---------------|--------------------|---------------|-----------|----------------|----------|
| Date de contrôle: | | Signature | | opérateur: | | |

<table>
<thead>
<tr>
<th>Volume final du Pool (ml):</th>
<th>10.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume dopage du QC (µl):</td>
<td>50.0</td>
</tr>
<tr>
<td>Prise d'essai (g):</td>
<td>5.0</td>
</tr>
<tr>
<td>Solution de dilution:</td>
<td>Eau</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Nom du standard</th>
<th>N° Lot</th>
<th>Concentration de la solution stock (µg/ml)</th>
<th>Concentration dans la matrice (ppb)</th>
<th>Volume de solution stock à pipeter (µl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F137</td>
<td>Tobramycine</td>
<td></td>
<td>1000</td>
<td>100</td>
<td>100.0</td>
</tr>
</tbody>
</table>

A.1.3.2. Pool P300-feed

<table>
<thead>
<tr>
<th>Nom:</th>
<th>P300-feed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composition et concentration:</td>
<td>Voir SOP DHA/ANA300</td>
</tr>
</tbody>
</table>

| Date de préparation: | | Date d'expiration: | | Signature | | opérateur: | |
|---------------------|---------------|--------------------|---------------|-----------|----------------|----------|
| Date de contrôle: | | Signature | | opérateur: | | |

<table>
<thead>
<tr>
<th>Volume final du Pool (ml):</th>
<th>10.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume dopage du QC (µl):</td>
<td>100.0</td>
</tr>
<tr>
<td>Prise d'essai (g):</td>
<td>5.0</td>
</tr>
<tr>
<td>Solution de dilution:</td>
<td>Eau</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Nom du standard</th>
<th>N° Lot</th>
<th>Concentration de la solution stock (µg/ml)</th>
<th>Concentration dans la matrice (ppb)</th>
<th>Volume de solution stock à pipeter (µl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F16</td>
<td>Spectinomycine</td>
<td></td>
<td>1000</td>
<td>440</td>
<td>220</td>
</tr>
<tr>
<td>F41</td>
<td>Apramycine</td>
<td></td>
<td>1000</td>
<td>1000</td>
<td>500</td>
</tr>
</tbody>
</table>
ANNEXE 2. **Composés recherchés, données chromatographiques et MRM**

<table>
<thead>
<tr>
<th>Nom</th>
<th>Voltage Cone (v)</th>
<th>Ion Parent (m/z)</th>
<th>Ions Filles (m/z)</th>
<th>Energie Collision (eV)</th>
<th>RT (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tobramycine (ISTD)</td>
<td>30</td>
<td>468.2</td>
<td></td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Spectinomycine</td>
<td>45</td>
<td>333.1</td>
<td>98, 140</td>
<td>20, 25</td>
<td></td>
</tr>
<tr>
<td>Apramycine</td>
<td>28</td>
<td>540</td>
<td>378, 217</td>
<td>16, 24</td>
<td></td>
</tr>
</tbody>
</table>

ANNEXE 3. **Composés recherchés**

Ces tableaux permettent la gestion du scope flexible en ajoutant (+) ou en retirant (-) des molécules ; la dernière colonne indique la date de validation ou du retrait du scope de cette molécule. L’absence de date signifie que la molécule a été validée antérieurement à l’introduction de la flexibilité du scope.

<table>
<thead>
<tr>
<th>Nom</th>
<th>Conc QC =CS4 (ppb) (*)</th>
<th>Incertitude (ppb)</th>
<th>Range de calibration (ppb)</th>
<th>Date validation (+) ou de retrait (-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectinomycine</td>
<td>440</td>
<td>220</td>
<td>200, 1760</td>
<td>10.03.2014 (+)</td>
</tr>
<tr>
<td>Apramycine</td>
<td>1000</td>
<td>500</td>
<td>4000</td>
<td>10.03.2014 (+)</td>
</tr>
</tbody>
</table>

(*) Concentration dans la matrice =Niveau Max. acceptable (ppb) établi par l’AFSCA/BEMEFA