I-MET 063

Détermination et quantification par GC-MS de la mélamine (1 mg/kg), de l’amméline et de l’acide cyanurique (20 mg/kg).

Date d’application: 28-09-2008

<table>
<thead>
<tr>
<th>Rédigée par:</th>
<th>Nom – fonction / service</th>
<th>Date</th>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ing. Fabian Eienne-</td>
<td>Responsable technique</td>
<td>28-09-2008</td>
<td></td>
</tr>
<tr>
<td>Thewissen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vérifié par:</td>
<td>M. Aubry</td>
<td>09-10-2008</td>
<td></td>
</tr>
<tr>
<td>Responsable qualité</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approuvée par:</td>
<td>Ir. Alain DUBOIS</td>
<td>09-10-2008</td>
<td></td>
</tr>
<tr>
<td>Manager du Laboratoire</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Relevé des révisions du document

<table>
<thead>
<tr>
<th>Révision par/date*</th>
<th>Validation par / date**</th>
<th>Motif de la révision</th>
<th>Partie de texte / portée de la révision</th>
</tr>
</thead>
<tbody>
<tr>
<td>30-09-08 Pallares O.</td>
<td>01-10-08 Etienne-Thewissen F.</td>
<td>Validation passe de 20 à 2,5 mg/kg Changement de SI</td>
<td></td>
</tr>
<tr>
<td>06-10-08 De Tandt Th.</td>
<td>07-10-08 Etienne-Thewissen F.</td>
<td>Validation passe de 2,5 à 1 mg/kg Ajout du GC-MS Quad</td>
<td></td>
</tr>
</tbody>
</table>

* La différence entre la date du jour et la dernière révision ne peut dépasser 5 ans.

** Adapter le numéro de la révision et le cas échéant, l'année. Après approbation, adapter la date d'application compte tenu du temps nécessaire pour informer les collaborateurs concernés.

Destinataires

Laborantins en charge de l'analyse :
- Olivier Pallares
- Thierry De Tandt
- Isabelle Monisse
- Marie-Christine Offermanne

Responsable de Section : Fabian Etienne-Thewissen
Détermination et quantification par GC-MS de la mélamine (1 mg/kg), de l’amméline et de l’acide cyanurique (20 mg/kg).

1 OBJET ..4
2 CHAMP D’APPLICATION ...6
3 DOCUMENTS LÉGAUX ET NORMATIFS ...6
4 DÉFINITIONS ET ABRÉVIATIONS..6
5 PRINCipe...6
6 INDICATEURS DE PRESTATION..6
 6.1 IDENTIFICATION DES PICS, ..6
 6.2 CONTROLE DE LA SÉQUENCE, ..8
7 CONSIGNES DE SÉCURITÉ ET MESURES PARTICULIÈRES...8
8 RÉACTIFS ET SOLUTIONS PRÉPARÉES ..8
 8.1 RÉACTIFS ..8
 8.2 SOLUTIONS ..9
9 EQUIPEMENT ...10
10 MODE OPÉRATOIRE ..10
 10.1 CONDITIONS CHROMATOGRAPHIQUES ..10
 10.2 PRÉPARATION DE LA COURBE DE CALIBRATION, ..11
 10.3 PRÉPARATION DE L’ÉCHANTILLON ..11
 10.4 PRÉPARATION DES ÉCHANTILLONS DOPÉS, ...12
 10.5 PRÉPARATION D’UN BLANC MATRICE ...12
11 CONTRÔLE DE QUALITÉ ET ANALYSE CHROMATOGRAPHIQUE12
 11.1 VÉRIFICATION DE L’ÉTAT DU SYSTÈME CHROMATOGRAPHIQUE,12
 11.2 INJECTION DES SOLUTIONS ..12
12 CALCUL DES RÉSULTATS ..13
 12.1 CALCUL ..13
 12.2 RAPPORTAGE ..13
13 INVENTAIRE DES DOCUMENTS POUR RÉFÉRENCE...13
 13.1 FORMULAIRE ...13
 13.2 ANNEXES ...13
1 Objet

La procédure développée permet de quantifier et confirmer la présence de mélamine à une concentration supérieure à 1 mg/kg et de deux composés apparentés à une concentration supérieure à 20 mg/kg : l’acide cyanurique et l’amméline. A titre informatif, nous incluons dans cette méthode l’ammélide, une troisième molécule dérivée de la mélamine, mais sa détermination posant problème, la présente méthode n’est pas validée pour sa détection et/ou sa quantification.

La calibration proposée dans cette méthode permet de couvrir une très large gamme de concentrations en mélamine : le plus bas point de la courbe correspond à un échantillon contenant 0,5 mg/kg en mélamine et le point le plus haut correspond à un échantillon contenant 64 mg/kg en mélamine. Cela permet de doser des échantillons fortement contaminés en mélamine sans devoir recommencer l’analyse en diluant les échantillons.

Exemple de courbe de calibration obtenue avec le GC-MS Quad.
Exemple du pic de mélamine (fragment 327) d’un échantillon dopé à 1 mg/kg, obtenu avec le GC-MS Quad.

Exemple du pic de mélamine (fragment 327 depuis le 342) d’un échantillon dopé à 1 mg/kg, obtenu avec le GC-MS Ion Trap.
2 Champ d’application

La méthode est validée sur des matrices telles que les poudres de lait, les bonbons et les biscuits. Elle devrait être applicable également aux protéines de soja, gluten et autres denrées d’origine végétale pour lesquelles nous n’avons pas observé d’effet de matrice.

3 Documents légaux et normatifs

4 Définitions et abréviations

BSTFA – 1% TMCS : bis(trimethylsilyl)trifluoroacetamide – 1% trimethylchlorosil.
DEA : diéthylamine
ACN : acétonitrile
S/N : rapport signal sur bruit
SIM : selected ion monitoring
TIC - MS/MS : acquisition alternative du signal en TIC (total ion current) et MS/MS.
RSD : déviation standard relative
SI : standard interne
R123 : R suivit d’un nombre à trois chiffres correspond à une référence de réactif interne au laboratoire.

5 Principe

Les échantillons sont extraits à l’aide d’un mélange diéthylamine/eau/acétonitrile et les analytes dérivatisés (BSTFA-TMCS) sont recherchés par GC-MS. La méthode a été testée avec deux détecteurs différents : un simple quadrupôle et un Ion Trap.

Avec le quadrupôle, la détection et la quantification de l’améline et la mélamine sont réalisées en mode SIM. Les essais montrent que l’acide cyanurique ne peut pas être recherché à une concentration de 20 ppm sur un simple quadrupôle.

Avec l’Ion Trap, la détection et la quantification de l’acide cyanurique, de l’améline et de la mélamine sont réalisées en mode TIC - MS/MS.

6 Indicateurs de prestation

6.1 Identification des pics.

Le temps de rétention des analytes de l’échantillon ne peuvent différer de plus de 0,05 minute par rapport aux temps de rétention moyens des analytes correspondants dans les échantillons dopés de la séquence.

De plus, pour la mélamine, les rapports des fragments caractéristiques (171, 327, 342) de l’échantillon doivent être compris dans les intervalles du tableau suivant :

<table>
<thead>
<tr>
<th></th>
<th>171</th>
<th>327</th>
<th>342</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>31,1 % à 40,8 %</td>
<td>28,2 % à 45,4 %</td>
<td>16,3 % à 38,2 %</td>
</tr>
</tbody>
</table>

Ces rapports des fragments caractéristiques sont issus du dossier de validaton de la mélamine à 1 ppm.
Enfin, le signal détecté et confirmé aux temps de rétention des analytes recherchés doit être au moins 5 fois supérieur au bruit de fond.

A titre informatif, voici les spectres des 4 molécules :

Figure 1 : Spectre de la mélamine (dérivé TMCS)

Figure 2 : Spectre de l'acide cyanurique (dérivé TMCS)

Figure 3 : Spectre de l'amméline (dérivé TMCS)
6.2 Contrôle de la séquence.

Le coefficient de détermination de la courbe de calibration doit être supérieur à 0,99.
La matrice blanche ne peut présenter aux temps de rétention des analytes recherchés de pic supérieur à 3 fois le bruit de fond.
La teneur calculée pour les échantillons dopés doit être comprise entre 70 et 120 % de la teneur théorique.
Sinon, recommencer la préparation des échantillons dopés et/ou du blanc et/ou des solutions de calibration et réinjecter la séquence.

7 Consignes de sécurité et mesures particulières

Suivre les instructions de sécurité spécifiées sur les fiches de sécurité des réactifs.
Toutes les manipulations de solvants sont réalisées sous hotte.

8 Réactifs et solutions préparées

8.1 Réactifs

8.1.1 Mélamine (2,4,6-Triamino-1,3,5-triazine - C\textsubscript{3}H\textsubscript{6}N\textsubscript{6}) > 99% (CAS 108-78-1 – R644)
8.1.2 Acide cyanurique (1,3,5-Triazine-2,4,6-triol 2,4,6-Trihydroxy-1,3,5-triazine - C\textsubscript{3}H\textsubscript{3}N\textsubscript{3}O\textsubscript{3}) > 98% (CAS 108-80-5 – R647)
8.1.3 Ammélide (2-Amino-4,6-dihydroxy-1,3,5-triazine - C\textsubscript{3}H\textsubscript{4}N\textsubscript{4}O\textsubscript{2}) > 99,5% (CAS 645-93-2)
8.1.5 Benzamide (Amide benzoïque- C\textsubscript{6}H\textsubscript{5}CONH\textsubscript{2}) 99% (CAS 55-21-0 – R424)
8.1.6 BSTFA – 1% TMCS – R648
8.1.7 Méthanol qualité HPLC – R016
8.1.8 Acétonitrile qualité HPLC – R472
8.1.9 DEA qualité HPLC – R650
8.1.10 Pyridine qualité p.a. – R081
8.1.11 H\textsubscript{2}O ultra-pure – R144
8.2 Solutions

8.2.1 Solution d’extraction – DEA/H$_2$O/ACN (10/40/50, v/v/v).
Préparer une solution stock à l’aide de 10 parts de DEA, 40 parts d’H$_2$O et 50 parts d’ACN. La solution est conservée au frigo à l’abri de la lumière.

8.2.2 Solution de standard interne – Benzamide.
Dans un ballon jaugé, préparer une solution de benzamide à une concentration de 4 µg/ml dans la pyridine. Dissoudre 5 minutes au bain à ultra-sons. Préparer suffisamment de cette solution (utilisée à raison de 100 µl par solution à injecter).

8.2.3 Solution de mélamine à 1 mg/ml.
Dans un ballon jaugé de 10 ml, préparer une solution de mélamine à 1 mg/ml dans un mélange de DEA/H$_2$O (20/80, v/v). Dissoudre 15 minutes au bain à ultra-sons.

8.2.4 Solution mère des 4 molécules.
Dans un ballon jaugé de 50 ml, peser 20 mg de chacune de trois molécules dérivées (8.1.2, 8.1.3, 8.1.4). Ajouter 1 ml de la solution de mélamine à 1 mg/ml (8.2.3). Amener au trait avec le mélange de DEA/H$_2$O (20/80, v/v). Dissoudre 15 minutes au bain à ultra-sons.
Cette solution a une concentration de 0,02 mg/ml en mélamine et de 0,4 mg/ml pour les 3 molécules dérivées.

8.2.5 Solution de calibration des levels 7 et 8.
Diluer 6,25 fois la solution mère avec le mélange de DEA/H$_2$O (20/80, v/v) : 4 ml en jaugé de 25 ml.
Cette solution a une concentration de 3,2 µg/ml en mélamine et de 64µg/ml pour les 3 molécules dérivées.

8.2.6 Solution de calibration des levels 4, 5 et 6.
Diluer 50 fois la solution mère avec le mélange de DEA/H$_2$O (20/80, v/v) :1 ml en jaugé de 50 ml.
Cette solution a une concentration de 0,4 µg/ml en mélamine et de 8 µg/ml pour les 3 molécules dérivées.

8.2.7 Solution de calibration des levels 1, 2 et 3.
Diluer 400 fois la solution mère avec le mélange de DEA/H$_2$O (20/80, v/v) : 2,5 ml de la solution de calibration des levels 4, 5 et 6 (8.2.6) dans un ballon jaugé de 20 ml.
Cette solution a une concentration de 0,05 µg/ml en mélamine et de 1 µg/ml pour les 3 molécules dérivées.

8.2.8 Solution de dopage.
Dans un jaugé de 10 ml, peser 20 mg de chacune des trois molécules dérivées (8.1.2, 8.1.3, 8.1.4). Ajouter 1 ml de la solution de mélamine à 1 mg/ml (8.2.3). Amener au trait avec le mélange de DEA/H$_2$O (20/80, v/v). Dissoudre 15 minutes au bain à ultra-sons.
Cette solution a une concentration de 0,1 mg/ml en mélamine et de 2,0 mg/ml pour les 3 molécules dérivées.

8.2.9 Solution de dopage diluée.
Diluer 20 fois la solution de dopage (8.2.8) avec le mélange de DEA/H$_2$O (20/80, v/v) : 1 ml en jaugé de 20 ml.
Cette solution a une concentration de 5 µg/ml en mélamine, et de 100 µg/ml pour les 3 molécules dérivées.

Note : Des fioles d’injection contenant 5 µg des analytes recherchés ont été préparées et évaporées à sec sous flux d’azote et sur bain de sable lors des essais de validation de la

9 **Equipement**

9.1 GC (Trace 2000) avec un détecteur Ion Trap (Polaris ®) et GC (Trace 2000 ®)avec un détecteur simple quadrupôle (Finnigan).

9.2 Colonne DB-5MS de 30 m x 0,25 mm ; 0,1 μm phase (marque testée : J&W ®).

9.3 Etuve Thermostatée à 70 °C.

9.4 Système d’évaporation à 60 °C sous flux d’azote.

9.5 Balance analytique précise à 0,0001 g près.

9.6 Vortex.

9.7 Broyeur permettant de réduire des bonbons en poudre (type IKA ®).

9.8 Mortier pour broyer les biscuits.

9.9 Centrifugeuse pouvant centrifuger des tubes type Falcon ® de 50 ml à 2500 t/min.

9.10 Bain à ultra-sons.

9.11 Agitateur orbital.

9.12 Micropipettes à volume variable de 50 à 200 μl et 100 à 1000μl.

9.13 Verrerie classique de laboratoire.

9.15 Filtres Chromfil ® en polyamide, porosité 0,2 μm.

9.16 Tubes Falcon ® de 50 ml.

10 **Mode opératoire**

10.1 **Conditions chromatographiques**

10.1.1 Paramètres pour le GC-MS Ion Trap (détails en annexe A) :

Volume d’injection : 1μl

Température de l’injecteur : 180 °C

Injection splitless (1 mn)

Split flow : 40 ml/mn

Gaz : Helium - 2 ml/mn

Paramètres du four :

- Température initiale : 70 °C pendant 2 mn
- Rate : 10 °C / mn
- Température finale : 250 °C pendant 5 mn

Paramètres du détecteur : l’annexe A présente les paramètres de recherche de la mélamine à 1 ppm à savoir : MS/MS : 342->327. Si l’acide cyanurique est recherché, ajouter la fenêtre 345->330 et pour l’amméline, la fenêtre 343->328.

Durée de l’analyse : 25 mn

10.1.2 Paramètres pour le GC-MS quadrupôle (détails en annexe B) :

Volume d’injection : 1μl
Température de l’injecteur : 210 °C
Injection splitless (0,2 mn)
Split flow : 40 ml/mn
Gaz : Helium - 1 ml/mn

Paramètres du four :
 Température initiale : 80 °C pendant 2 mn
 Rate : 10 °C / mn
 Température finale : 250 °C pendant 2 mn

Paramètres du détecteur : l’annexe A présente les paramètres de recherche de la mélamine à 1 ppm à savoir la fenêtre SIM : 327, 342 et 171. Si l’amémiline est recherchée ajouter la fenêtre SIM : 343 et 328.
Durée de l’analyse : 21 mn

10.2 Préparation de la courbe de calibration.
Cette courbe comporte 8 points à des concentrations croissantes en analytes.
Prélever à partir de la solution de calibration des levels 1, 2 et 3 (8.2.7) et déposer en fiole des volumes de 50 µl, 100 µl et 200 µl. Ces fioles sont référencées de L1 à L3.
Prélever à partir de la solution de calibration des levels 4, 5 et 6 (8.2.6) et déposer en fiole des volumes de 50 µl, 100 µl et 200 µl. Ces fioles sont référencées de L4 à L6.
Prélever à partir de la solution de calibration des levels 7 et 8 (8.2.5) et déposer en fiole des volumes de 50 µl et 100 µl. Ces fioles sont référencées L7 et L8.
Les fioles sont évaporées sous léger flux d’azote en étuve thermostatisée à 60 °C. Après évaporation à sec, ajouter 100 µl de la solution de standard interne (8.2.2), 200 µl de pyridine et 200 µl de BSTFA-1%TMCS.
Bien visser le capuchon sur la fiole, agiter brièvement au vortex et placer ce dernier dans une étuve à 70 °C pendant 45 minutes. Les levels sont alors prêts pour l’injection.
Quantité théorique d’analyte pour chaque level ainsi préparé :

<table>
<thead>
<tr>
<th>Quantité (ng)</th>
<th>Mélamine</th>
<th>Molécules dérivées</th>
</tr>
</thead>
<tbody>
<tr>
<td>level 1 :</td>
<td>2,5</td>
<td>50</td>
</tr>
<tr>
<td>level 2 :</td>
<td>5,0</td>
<td>100</td>
</tr>
<tr>
<td>level 3 :</td>
<td>10,0</td>
<td>200</td>
</tr>
<tr>
<td>level 4 :</td>
<td>20,0</td>
<td>400</td>
</tr>
<tr>
<td>level 5 :</td>
<td>40,0</td>
<td>800</td>
</tr>
<tr>
<td>level 6 :</td>
<td>80,0</td>
<td>1600</td>
</tr>
<tr>
<td>level 7 :</td>
<td>160,0</td>
<td>3200</td>
</tr>
<tr>
<td>level 8 :</td>
<td>320,0</td>
<td>6400</td>
</tr>
</tbody>
</table>

Tableau 1 : quantité analyse (ng) / level

10.3 Préparation de l’échantillon.
En tube Falcon, peser à 0,0001 g près environ 0,5 g d’échantillon homogénéisé d’une portion représentative de l’échantillon. Ajouter à la pipette 20 ml du mélange de solvant d’extraction (8.2.1). Agiter vigoureusement (manuellement ou au vortex). Placer les tubes Falcon au bain à ultra-sons pendant 15 minutes. Placer ensuite les tubes sur l’agitateur orbital pendant 15 minutes. Centrifuger à 2500 t/min pendant 5 minutes. Filtrer une portion du surnageant sur filtre Chromafil (0,2 µm).
Transférer 200 µl du filtrat en fiole et les évaporer sous léger flux d’azote dans l’étuve thermostatisée à 60 °C. Après évaporation à sec, ajouter 100 µl de la solution de standard interne (8.2.2), 200 µl de pyridine et 200 µl de BSTFA-1%TMCS.

Note : le filtrat doit être complètement évaporé car la présence d’eau empêche la dérivation des analytes recherchés.

Bien visser le capuchon sur la fiole, agiter brièvement au vortex et placer cette dernière dans une étuve à 70 °C pendant 45 minutes. L’échantillon est alors prêt pour l’injection.

Note : Si la présence de matériel insoluble est observée dans le fond de la fiole, transférer le surnageant de la solution dans une autre fiole avant injection.

Un flow chart de cette procédure se trouve en annexe C.

10.4 Préparation des échantillons dopés.

Lors de chaque séquence d’analyse, une matrice blanche représentative de la nature de l’échantillon à analyser est dopée.

10.4.1 Echantillon dopé à basse concentration

Pour ce faire, suivre la procédure de préparation des échantillons (10.3) en ajoutant 100 µl de la solution de dopage diluée (8.2.9) à la prise d’essai. Cette matrice blanche ainsi préparée a une teneur en mélamine de 1 mg/kg.

10.4.2 Echantillon dopé à haute concentration

Pour ce faire, suivre la procédure de préparation des échantillons (10.3) en ajoutant 200 µl de la solution de dopage (8.2.8) à la prise d’essai. Cette matrice blanche ainsi préparée a une teneur en mélamine de 40 mg/kg.

10.5 Préparation d’un blanc matrice.

Lors de chaque séquence d’analyse, une matrice blanche représentative de la nature de l’échantillon à analyser est préparée selon la procédure de préparation des échantillons (10.2).

11 Contrôle de qualité et analyse chromatographique

11.1 Vérification de l’état du système chromatographique.

Injecter une des fioles contenant 5 µg des analytes (note en 8.2) afin de vérifier le bon fonctionnement du système chromatographique (pics aux bons temps de rétention et signal de même amplitude que lors des essais précédents).

11.2 Injection des solutions.

Séquence d’injections :

Solution de calibration : L1—L9 (1×)
Solution blanc matrice (1×)
Solution échantillon dopé (1×)
Solution échantillon : maximum 6 échantillons
Solution échantillon dopé (1×)
Solution échantillon : maximum 6 échantillons
Solution échantillon dopé 1 (1×)

...
12 Calcul des résultats

12.1 Calcul
Etablir la courbe d’étalonnage en ayant utilisé les valeurs du tableau 1 (corrigées par les pesées exactes et les puretés des standards utilisés) pour les levels de calibration. La courbe doit être calculée sur un minimum de 5 levels, le plus bas et le plus haut level ne pouvant être éliminés.

Calculer la teneur en analyte avec la formule :
Teneur en analyte (mg/kg) = \(Q / (10 \times P) \)

où
Q = Quantité trouvée dans les 200 µl de solution d’échantillon (ng) : valeur donnée par le logiciel à partir de la droite de calibration obtenue.
P = Prise d’essai (g)

12.2 Rapportage
Dans le cas où l’analyse révèle la présence d’un des analytes recherchés, le rapport mentionnera pour chacun des analytes concernés :
« Présence de "nom de l’analyte" à une concentration de X mg/kg ».
Si aucun signal n’est détecté, le rapport mentionnera pour chacun des analytes concernés :
« "nom de l’analyte" non détecté à la limite de 1 mg/kg ».

Le dossier de chaque séquence d’analyse est composé de :
- Les demandes d’analyse ;
- La feuille de pesée ;
- Les rapports d’exécution (F543) ;
- La séquence injectée ;
- Le fichier de synthèse excel (données brutes et calculs).

13 Inventaire des documents pour référence

13.1 Formulaire
F543 Rapport d’exécution

13.2 Annexes
Annexe A Paramètres pour le GC-MS IOn Trap
Annexe B Paramètres pour le GC-MS Quadrupôles
Annexe C Flow chart de la procédure de préparation de l’échantillon
Annexe A : Paramètres pour le GC-MS Ion Trap
Annexe A : page 3/4
Annexe B : Paramètres pour le GC-MS Quadrupôles
Annexe C : Flow chart de la procédure de préparation de l’échantillon

Peser 0.5 g en tube Falcon de 50 ml

Solution de dopage à 5 µg ou 100 µg Mélamine/ml

Mélange DEA/H₂O/ACN 10/40/50

100 µl ou 200 µl

20 ml

15 minutes

Filtrer 200 µl du surnageant sur Chromfil de 0,2 µm.

Flux d’azote

15 minutes

2500 t/min 5 minutes

100 µl 1% TMCS

200 µl BSTFA

200 µl pyridine

100 µl SI

Evaporation à sec sous flux d’azote et dans étuve thermostatisée à 60°C.

70°C 45 minutes

5 minutes

70°C 45 minutes